Acids and Bases

- Refresher Overview
- Kimberly Westra DNP, MSN, APRN, CRNA

Acids

- An acid is a substance that releases H+ ions in an aqueous solution
 - Aqueous means water
- Example: when hydrochloric acid is dissolved in water, the compound separates into chlorine ions (Cl-) and hydrogen ions (H+)

Strong Acids

 A strong acid breaks down completely in water and gives off many H+ ions

Weak Acid

 A weak acid only partially breaks down. It gives off much less H+ than a strong acid.

Characteristics of Acids

- Acids have a sour taste
- Acids react with metals & carbonates to produce gas
- Acids contain hydrogen

Characteristics of Acids: Taste Sour

 Acids in foods taste sour and produce a burning or prickling feeling on the skin

Characteristics of Acids

 Since tasting or touching an unknown chemical is extremely dangerous, other methods are needed to tell whether a solution is an acid

Characteristics of Acids: Reacts with Carbonate

- A safe way to test to see if a solution is an acid is to place a few drops on a compound that contains a carbonate (CO₃)
- Example: limestone is a rock that contains calcium carbonate (CaCO₃) When an acid touches a piece of limestone, a reaction occurs that produces carbon dioxide gas

Characteristics of Acids: Reacts with Metal

- Acids also reacts with most metals
- The reaction produces hydrogen gas, which you can see as bubbles

Uses for ACIDS

- Sulphuric acid:
 - Detergents
 - Car batteries
- Ethanoic acid:
 - Vinegar to preserve food
 - Adhesives (glue)
- Hidrochloric Acid:
 - Cleaning metals
 - Leather processing

Characteristics of Acids: Contain Hydrogen

HCI Hydrochloric acid $HC_2H_3O_2$

Acetic acid

H₂SO₄

Sulfuric acid

 $H_3C_6H_5O_7$

Citric acid

HNO₃

H₃PO₄

Phosphoric acid

 H_2CO_3

Carbonic acid

 $H_2C_2O_4$

Oxalic acid

-

Bases

- A base is a substance that releases hydroxide (OH-) ions in an aqueous solution
- Example: When sodium hydroxide (NaOH) is dissolved in water, the compound separates into sodium ions (Na+) and hydroxide ions (OH-)

Sodium Hydroxide

Characteristics of Bases

- Bases usually taste bitter
- Bases feel slippery
- Bases contain hydroxide ions (OH-)

Characteristics of Bases: Taste Bitter

Example: Baking soda

Characteristics of Bases: Taste Bitter

- Mild bases in foods taste bitter and feel slippery, but as with acids, tasting and touching are not safe ways of testing whether a solution is a base
- In fact, some strong bases can burn the skin as badly as strong acids

 Bases feel soapy or slippery because they react with acid molecules in your skin called

fatty acids

L

Characteristics of Bases: Feel Slippery

- In fact, this is exactly how soap is made. Mixing base- usually sodium hydroxide – with fatty acids produces soap
- So when a base touches your skin, the combination of the base with your own fatty acids actually makes a small amount of soap

Family of Bases

Characteristics of Bases: Contain Sodium Hydroxide (OH-)

Strong Bases	The Formulae
Lithium hydroxide Sodium hydroxide Potassium hydroxide Rubidium hydroxide Caesium hydroxide Barium hydroxide Calcium hydroxide Strontium hydroxide	LiOH NaOH KOH RbOH CsOH Ba(OH) ₂ Ca(OH) ₂ Sr(OH) ₂

Properties of Acids and Bases

ACIDS	BASES	
taste sour	taste bitter	
do not feel slippery	feel slippery	
pH < 7	pH > 7	
release hydrogen (H+) ions in aqueous solution	release hydroxide (OH·) ions in aqueous solution	
corrode metals	do not corrode metals	
react with metals to produce a compound and hydrogen gas	do not react with metals to produce a compound and hydrogen gas	
turn litmus red/pink	turn litmus blue	

Properties of Acids & Bases

- Similarities between acids and bases
 - Dissolve in water
 - Conduct electricity in aqueous solution
 - Can irritate or burn skin

- pH stands for "potential hydrogen" and is a measure of how many H+ ions there are in solution.
- The strength of an acid or base is usually measured using a pH scale
- The more H+ there are, the lower the pH will be

The pH Scale

- The numbers of the pH scale usually range from 0 – 14, but numbers outside this range are possible
- The middle number, 7, represents a neutral solution
- A neutral substance is neither an acid nor a base. Pure water has a pH of 7

- pH < 7 indicate acidic solution
- pH = 7 indicate neutral solution
- pH > 7 indicate basic solution

- A concentrated strong acid has a low pH value
- A concentrated strong base has a high pH value

Acid-Base Indicators

- An acid-base indicator is a compound that will change color in the presence of an acid or base
- Litmus is a plant extract that can be blue or red (pink)
 - Litmus turns red/pink in an acidic solution
 - Litmus turns blue in a basic solution

Acid-Base Indicators

 The color of hydrangea flowers is dependent upon the pH of soil

Acid-Base Indicators

- It would be impossible to determine the pH of all solutions using just one indicator, such as litmus
- Several other acid-base indicators exist, each producing a color change at a specific pH level

Acids and Bases Neutralize Each Other

 When an acid and base react with each other, the characteristic properties of both are destroyed. This is called neutralization.

Acids and Bases Neutralize Each Other

- The salts formed may be soluble in water or can be insoluble
- If the salt is insoluble, a precipitate will form
- Recall: a precipitate is a suspension of a small, solid particles formed during a chemical reaction

NEUTRALIZATION REACTION EQUATION

How Do Local Block Nerve Cells?

Acid & Bases in Blood Gases

of Hospital Medicine: www.accessmedicine.com

Blood Gases

Respiratory/Metabolic Acidosis/Alkalosis

State the patient's disorder:

pH 7.38, PCO2 49, HCO3- 34

pH 7.55, pCO2 25, HCO3- 26

pH 7.31, pCO2 49, HCO3- 23

pH 7.44, pCO2 48, HCO3- 32

Blood Gas Compensation

Compensatory mechanisms

- 1. Chemical buffering-immediate
 - 2. Respiratory compensation

Renal compensation

-more gradual

Acidosis & Alkalosis Physiological Effects

SYMPTOMS OF ACIDOSIS

Central Nervous System

Headache Sleepiness Confusion Loss of consciousness Coma

Respiratory System

Shortness of breath Coughing

Heart

Arrhythmia Increased heart rate

Muscular System

Seizures Weakness

Digestive System

Nausea Vomiting Diarrhea

Central Nervous System

Confusion Light-headedness Stupor Coma

Peripheral Nervous System

Hand tremor Numbness or tingling in the face, hands, or feet

Muscular System

Twitching Prolonged spasms

Digestive System

Nausea Vomiting

Blood Gases: Acid Base Dilemma

Pka is the Ph in Which 50% of Drug Ionized & 50% Non Ionized

	Bases	p <i>K</i> _a	Acids	p <i>K</i> _a	
Weak	Diazepam	3.7	Salicylic Acid	3	Strong
1	Etomidate	4.1	Frusemide	3.9	
	Midazolam	6.15			
	Alfentanil	6.5			
	Ketamine	7.5	Thiopentone	7.6	
	Lignocaine	7.8	Methohexitone	7.9	
	Bupivacaine	8.2	Atropine	8.9	
	Fentanyl	8.4	Paracetamol	9.5	V
	Morphine	8.6			V
Strong			Propofol	11	Weak

QUESTIONS?

