Heart valve replacement without surgery!

The rapid evolution of catheter treatment of heart valve problems

Neil Wimmer MD MSc FACC FSCAl April 20, 2023 ChristianaCare^{*}

Our patient....

- 84 year old man.
- Lives with his son but remains active.
- Generally able to climb up stairs, but progressive limitation due to dyspnea.
- Prior medical history:
 - CAD s/p CABG
 - CKD with baseline creatinine 1.5
 - History of TIA
 - s/p endovascular AAA repair

Our patient....

- Physical Exam:
 - BP 132/74 mm Hg, HR 68
 - Dampened, delayed carotid upstroke (parvus et tardus)
 - Late-peaking systolic ejection murmur (ii/vi)
 - Muffled aortic component of S2
- ECG: sinus rhythm with LVH with repolarization changes (strain pattern)

Aortic Valve Stenosis

Examples of types of aortic stenosis and age of presentation of aortic stenosis

JAMA Cardiol. 2016;1(5):623. Image courtesy of Michael Davidson, MD

Our patient....

STS Adult Cardiac Surgery Database Version 2.9 RISK SCORES Procedure: Isolated AVR

CALCULATE

Risk of Mortality: 4.529% Renal Failure: 7.058% Permanent Stroke: 2.030% Prolonged Ventilation: 19.478% DSW Infection: 0.337% Reoperation: 4.434% Morbidity or Mortality: 26.405% Short Length of Stay: 12.754% Long Length of Stay: 19.046% эn.

son but remains active. to climb up stairs, but nitation due to dyspnea.

history: CABG baseline creatinine 1.5 f TIA vascular AAA repair

PRINT

CLEAR

Aortic Valve Stenosis

Examples of types of aortic stenosis and age of presentation of aortic stenosis

JAMA Cardiol. 2016;1(5):623. Image courtesy of Michael Davidson, MD

Aortic Valve Stenosis: The diagnosis

- Any aortic stenosis: 14.2%
- Severe aortic stenosis: 3.4%

J Am Coll Cardiol. 2013; 54(6). Eur J Echocardiogr. 2009;11(1).

Aortic Valve Stenosis: The diagnosis

Energy per unit volume before = Energy per unit volume after

Eur J Echocardiogr. 2009;10(1):1-25.

Aortic Valve Stenosis: The diagnosis

Aortic stenosis is deadly.

From Braunwald's Heart Disease, 10th ed.

Aortic stenosis is deadly.

From Braunwald's Heart Disease, 10th ed.

Mortality without valve replacement

Leon MB, Smith CR, et al. N Engl J Med 2010

Low-flow, low gradient AS

Clavel, Magne, Pibarot. European Heart Journal, 2016.

Surgical AVR - A Dramatic Intervention

Surgical Aortic Valve Replacement

More surgery being performed through 6-8 cm incisions

Surgical Aortic Valve Replacement

10% 9% 8% 7% Percent of Patients 6% 5% 4% 3% 2% 1% 0% 2008 2017 2008 2017 2008 2017 **AV Replace AV Replace** V Replace + CAB V Replace

Unadjusted Aortic Valve Operative Mortality Yearly over last 10 years

Society of Thoracic Surgery. 2017.

Surgical Aortic Valve Replacement

Post-Procedure LOS for Aortic Valve Procedures

Society of Thoracic Surgery. 2017.

"Inoperability"

Age 72

The standard discussion in the elderly.

Vs.

The U.S. Population is Aging Rapidly

Census Bureau, U.S. Interim Projections by Age, Sex, Race, and Hispanic Origin, 2004.

In the pre-TAVR era, 50-60% of patients with severe AS did not undergo AVR.

Bach DS, et al. Circ Cardiovasc Qual Outcomes. 2009;2:533-539

Aortic Stenosis is...

- Common
- Debilitating and deadly
- Readily treated....(sort of)....

Evolution of our approach...

Rogers, Thourani, Waksman, JAHA. 2018.

Transcatheter aortic valve replacement (TAVR):

Disruptive technology

Alain Cribier Sketches (1990)

What does TAVR look like?

Animation from American Heart Association.

What does in look like in practice?

Deployment

Initial Positioning

Use Center Marker and fine positioning feature

Slow, controlled initial inflation using nominal volume

Precise placement

There was one other breakthrough...

SAPIEN 3 Transcatheter Heart Valve

All Cause Mortality

Clinical Outcomes at 30 Days and 1 Year

Clinical Outcomes at 30 Days and 1 Year

Timeline of TAVR adoption by regulators

😵 ChristianaCare

Rogers, Thourani, Waksman, JAHA. 2018.

Evolution of our approach...

Rogers, Thourani, Waksman, JAHA. 2018.

SAPIEN Platforms in PARTNER Device Evolution

Primary Endpoint (ITT) with XT All-Cause Mortality or Disabling Stroke

тне

PARTNE

Unadjusted Time-to-Event Analysis –S3 All-Cause Mortality and All Stroke (AT)

Superiority Analysis Components of Primary Endpoint (VI)

All-Cause Mortality at 30 Days (As Treated Patients)

All Strokes at 30 Days

Before TAVR

In 2011

TAVR in low risk patients (2019)

Trial Description: Low-risk patients with aortic stenosis were randomized to TAVR using the SAPIEN 3 valve versus SAVR.

RESULTS

- Primary outcome, all-cause mortality, stroke, or rehospitalization (related to the procedure, valve, or heart failure) at 1 year: 8.5% of the TAVR group vs. 15.1% of SAVR group (p < 0.001 for noninferiority, p = 0.001 for superiority)
- Stroke at 30 days: 0.6% for TAVR vs. 2.4% for SAVR (p = 0.02)
- Permanent pacemaker: 6.5% for TAVR vs. 4.0% for SAVR (p = NS)

CONCLUSIONS

- Among low-risk patients with aortic stenosis, TAVR was superior to SAVR at preventing death, stroke, or rehospitalization at 1 year
- TAVR was also associated with a lower incidence of stroke and a similar incidence of permanent pacemaker compared with SAVR

Mack MJ, et al. N Engl J Med 2019;Mar 17:[Epub]

Important Endpoints in Iow-risk TAVR vs. SAVR

MJ Mack et al. N Engl J Med 2019;380:1695-1705.

Quality of Life in low-risk TAVR

MJ Mack et al. N Engl J Med 2019;380:1695-1705.

Low-risk TAVR subgroups

	No. of					P Value for
Subgroup	Patients	TAVR	Surgery	Diffe	erence (95% CI)	Interaction
		no. of event	s/total no. (%)	pe	rcentage points	
Overall	950	42/496 (8.5)	68/454 (15.1)		-6.6 (-10.8 to -2.5)	
Age						0.21
≤74 yr	516	29/273 (10.6)	36/243 (14.9)		-4.3 (-10.1 to 1.5)	
>74 yr	434	13/223 (5.8)	32/211 (15.3)		-9.5 (-15.3 to -3.7)	
Sex						0.27
Female	292	13/161 (8.1)	24/131 (18.5)		-10.4 (-18.3 to -2.5)	
Male	658	29/335 (8.7)	44/323 (13.8)		-5.1 (-9.9 to -0.3)	
STS-PROM score						0.98
≤1.8	464	21/232 (9.1)	36/232 (15.7)		-6.7 (-12.6 to -0.7)	
>1.8	486	21/264 (8.0)	32/222 (14.5)		-6.5 (-12.2 to -0.8)	
Left ventricular ejection fraction						0.48
≤65	384	20/208 (9.6)	30/176 (17.2)		-7.6 (-14.5 to -0.7)	
>65	524	21/264 (8.0)	32/260 (12.4)		-4.4 (-9.6 to 0.7)	
NYHA class						0.54
l or ll	687	23/341 (6.8)	50/346 (14.5)		-7.8 (-12.4 to -3.2)	
III or IV	263	19/155 (12.3)	18/108 (16.9)		-4.7 (-13.5 to 4.1)	
Atrial fibrillation						0.67
No	786	33/418 (7.9)	51/368 (14.0)		-6.1 (-10.5 to -1.7)	
Yes	163	9/78 (11.6)	17/85 (20.3)		8.7 (-19.9 to 2.5)	
KCCQ overall summary score				1		0.27
≤70	407	23/219 (10.5)	37/188 (19.9)		-9.4 (-16.5 to -2.4)	
>70	536	18/275 (6.5)	29/261 (11.2)		-4.6 (-9.2 to 0.2)	
				-20 0	20	
				TAVR Better	Surgery Better	

Before TAVR

In 2011

In 2018

Now...

TAVR Access

TRANSAPICAL Through an incision between the ribs

Alternative Approaches: You can be creative...

Photo courtesy of Michael Davidson, MD; Schematics from AHA and Lederman et al. JACC. 2014. Alternative approaches You can be creative...

Zhan, Wimmer, Shah, Davidson. J Card Surg. 2015.

Procedural Developments and Continued Iterative Developments...

S NCBI Resources ⊙	How To 🕑		
Publiced.gov US National Library of Medicine National Institutes of Health	PubMed V	Advanced	Search

Abstract -

Send to: 🗸

Catheter Cardiovasc Interv. 2015 Jul 21. doi: 10.1002/ccd.26059. [Epub ahead of print]

Same day discharge after transcatheter aortic valve replacement: Are we there yet?

Généreux P^{1,2}, Demers P¹, Poulin F¹.

Author information

J Thorac Dis. 2015 Sep;7(9):1518-26. doi: 10.3978/j.issn.2072-1439.2015.08.21.

Sedation or general anesthesia for transcatheter aortic valve implantation (TAVI).

Mayr NP1, Michel J1, Bleiziffer S1, Tassani P1, Martin K1.

Author information

Before TAVR

In 2011

Before TAVR

In 2011

In 2018

Now...

Evolution of our approach When not to choose TAVR...

Indications

1. Young patient requiring a mechanical valve.

---Controversial: Young patient who wants a biologic valve but will outlive the prosthesis.

- 2. Bicuspid aortic stenosis with dilation of the ascending aorta
- 3. Very large aortic annulus
- 4. Patients ineligible for transfemoral access
- 5. Aortic stenosis with multivessel coronary artery disease

TAVR: Future Directions

Current Limitations:

➢ Vascular Complications

- Smaller devices (14 Fr)
- Alternative access

≻<u>Stroke</u>

- Rates are improving
- Embolic protection devices being studied

Perivalvular Leak

- Better sizing (MDCT)
- Better "skirts"

Bottom line

 TAVR is FDA approved for the treatment of severe aortic stenosis across the risk spectrum!!!!

• Understanding the role of TAVR in younger patients will evolve over time.

Questions?

Switch gears...

Mitral Regurgitation... a mixed bag of pathologies

Normal mitral valve

Degenerative MR caused by mitral valve prolapse

Degenerative MR caused by flail leaflet

Functional MR

MitraClip schematic

NEJM 2011.

MitraClip schematic

NEJM 2011.

Mitraclip in practice

MitraClip hemodynamics (pre)

Mean TMG 3 mmHg

Reversed PV Flow

Mean LA 22 mmHg LA V waves 60 mmHg

After first clip

After second clip

Everest II Final results (Degenerative)

C. Freedom From MV Surgery or Reoperation

Felaman, T. et at. J Am Coll Cardiol. 2015; 66(25):284

COAPT trial in functional MR

Stone. NEJM. 2018.

Mitra FR trial in functional MR

😵 ChristianaCare

Obadia. NEJM. 2018.

The evolution...

• Technologies to address valvular pathologies in less invasive ways continue to progress

• Exciting times are ahead!!!!

Thank you!

For further discussion or to refer a patient:

Neil Wimmer, MD MSc <u>neil.j.wimmer@christianacare.org</u>

Mary Kate Carroll TAVR Clinical Practice Coordinator 302-733-7714 <u>Mary.Carroll@christianacare.org</u>

Extra Slides

The Heart Team...an expanding concept

Figure 1A

Figure 1B

Chawla, Zhang, Shah, Norton, Wimmer. Submitted. 2018.

Ongoing clinical trials in low risk patients

Name	Unique Identifier	Population	Study Design	Primary End Point	THV in TAVR Arm	Sample Size
LRT ²³	NCT02628899	No age restriction STS ≤3%	Feasibility study Prospective TAVR arm with historical SAVR controls	All-cause mortality at 30 d	Transfemoral SAPIEN 3 or Evolut R/PRO	200 TAVR in main arm Up to 100 TAVR in bicuspid arm
PARTNER 3 ²⁴	NCT02675114	Age ≥65 y STS <4%	Noninferiority Randomized TAVR vs SAVR	All-cause mortality, all stroke, and rehospitalization at 1 y	Transfemoral SAPIEN 3	614 TAVR 614 SAVR
Medtronic TAVR in low risk patients ²⁵	NCT02701283	No age restriction STS <3%	Noninferiority Randomized TAVR vs SAVR	All-cause mortality or disabling stroke at 2 y	Transfemoral or subclavian Evolut R	625 TAVR 625 SAVR
NOTION 2 ²⁶	NCT02825134	Age 18 to 75 y STS <4%	Noninferiority Randomized TAVR vs SAVR	Composite rate of all-cause mortality, myocardial infarction and stroke at 1 y	Transfemoral Any CE-approved THV	496 TAVR 496 SAVR

The honest truth about many of our conversations in clinic.

Vs.

Decision aides from ACC Championing Care Initiative (2014-2015).

Will it help me live longer?

What are the risks?

This choice may not include invasive procedures

2 out of 100 people will have a stroke or TIA within 30 days

5 out of 100 people will have a stroke or TIA within 1 year

7 out of 100 people will have a stroke or TIA within 30 days 11 out of 100 people will have a stroke or TIA within 1 year

Other Possible Complications

- Major bleeding
- Kidney failure
- Pacemaker
- Damage to blood vessels

Decision aides from ACC Championing Care Initiative (2014-2015).

Embolic protection devices

Embolic protection devices

Kapadia. J Am Coll Cardiol. 2017.

There are options besides balloon expandable valves

Option to Fully Recapture and Reposition*

Valve positioned too deep Recapture begins

Partially recaptured

Valve fully recaptured

CHOICE Trial: comparison of balloon expandable vs. self expandable

Table 4. Procedural Outcome

	No./Tota	l No. (%)		
	Balloon-Expandable Valve (n = 121)	Self-expandable Valve (n = 120)	Relative Risk (95%CI)	<i>P</i> Value
Immediate procedural mortality	0 /121 (0)	0/120 (0)	-	-
Final aortic regurgitation				
Angiography ^a				
None/trace	75/121 (62.0)	42/120 (35.0)	1.77 (1.34-2.35)	
Mild	41/121 (33.9)	56/120 (46.7)	0.73 (0.53-0.99)	
Moderate	4/121 (3.3)	17/120 (14.1)	0.23 (0.08-0.67)	01
Severe	1/121 (0.8)	5/120 (4.2)	0.20 (0.02-1.67)	
Echocardiography ^b				
None/trace	88/121 (66.1)	59/120 (49.2)	1.48 (1.20-1.83)	
Mild	39/121 (32.2)	54/120 (45.0)	0.72 (0.52-0.99)	.005
Moderate	1/121 (0.8)	7/120 (5.8)	0.14 (0.02-1.13)	
Severe	1/121 (0.8)	0/120 (0)		
Aortic regurgitation index, mean (95% CI) ^c	29.0 (27.7-30.3)	27.3 (26.0-28.7)		.08
Coronary obstruction	2/121 (1.6)	0/120 (0.0)		.49
Annular rupture	0/121 (0)	0/120 (0)		
Loft-to-right shunt	2/121 (1.6)	2/120 (1.7)	0.99 (0.14-6.93)	.99
Device success (primary endpoint)	116/121 (95.9)	93/120 (77.5)	1.24 (1.12-1.37)	<.001

^a Assessed by angiography using the method of Sellers et al.¹⁹ Aortic regurgitation was classified into the following grades: absent or trace, mild, moderate, and severe, the latter comprised grades 3 and 4 according to Sellers.

- ^b Semiquantitatively assessed using echocardiography. For paravalvular regurgitation, grading was performed by estimating the proportion of the circumference of the valved stent occupied by the jet: less than 10% was graded as mild, 10% to 20% as moderate, and more than 20% as severe regurgitation.^{20,21}
- ^c Calculated as ([diastolic blood pressure –left ventricular end diastolic pressure]/systolic blood pressure) × 100 in 114 patients in self-expandable valve group and 116 in the balloon expandable valve group.

CHOICE Trial: comparison of balloon expandable vs. self expandable

Table 5. Thirty-Day Clinical Outcome

	No./Tota	No./Total No. (%)			
Variable	Balloon-Expandable Valve (n = 121)	Self-expandable Valve (n = 117)	Relative Risk (95% CI)	P Value	
Death					
Any cause	5/121 (4.1)	6/117 (5.1)	0.81 (0.25-2.57)	.77	
Cardiovascular causes	5/121 (4.1)	5/117 (4.3)	0.97 (0.29-3.25)	.99	
Stroke	7/121 (5.8)	3/117 (2.6)	2.26 (0.60-8.52)	.33	
Myocardial infarction	1/121 (0.8)	0/117 (0.0)		.99	
Bleeding					
Life threatening	10/121 (8.3)	14/117 (12.0)	0.69 (0.32-1.49)	.35	
Major	23/121 (19.0)	17/117 (14.5)	1.31 (0.74-2.32)	.36	
Minor	11/121 (9.1)	9/117 (7.7)	1.18 (0.51-2.74)	.70	
Major or minor	34/121 (28.1)	26/117 (22.2)	1.26 (0.81-1.97)	.30	
Vascular complications					
All	17/121 (14.0)	15/117 (12.8)	1.10 (0.57-2.09)	.78	
Major	12/121 (9.9)	13/117 (11.1)	0.89 (0.42-1.88)	.76	
Minor	5/121 (4.1)	2/117 (1.7)	2.42 (0.48-12.21)	.28	
Acute kidney injury	5/121 (4.1)	11/117 (9.4)	0.44 (0.16-1.23)	.13	
Repeat procedure for valve-related dysfunction	1/121 (0.8)	2/117 (1.7)	0.48 (0.04-5.26)	.62	
Combined safety end point ^a	22/121 (18.2)	27/117 (23.1)	0.79 (0.48-1.30)	.42	
Major adverse cardiovascular and cerebrovascular events ^b	8/121 (6.6)	4/117 (3.4)	1.93 (0.60-6.25)	.38	
Rehospitalization for heart failure	0/119 (0.0)	5/117 (4.3)		.02	
NYHA class improvement	100/106 (94.3)	91/105 (86.7)	1.09 (1.00-1.19)	.06	
Quality of life					
Score, mean (95% CI)	71.0 (68.2-73.9)	65.9 (62.4-69.5)		.02	
Score change, median (IQR)	12.5 (0-20)	10 (0-20)		.19	
New permanent pacemaker	19/110 (17.3)	38/101 (37.6)	0.46 (0.28-0.74)	.001	

Abbreviations: IQR, interquartile range; NYHA, New York Heart Association.

^a Defined as a composite of all-cause mortality, major stroke, life-threatening or disabling bleeding, acute kidney injury stage 3 including renal replacement therapy, periprocedural myocardial infarction, major vascular complications, and repeat procedure for valve-related dysfunction.

^b Defined as a composite of myocardial infarction, cardiac or vascular surgery and stroke.

JAMA. 2014;311(15):1503-1514.

Other Outcomes of TAVR vs. SAVR in Intermediate risk patients

	PPM Implantation		Stroke		Moderate or Seve	re PVL	New Atrial Fibrillation	
	TAVR	SAVR	TAVR	SAVR	TAVR	SAVR	TAVR	SAVR
PARTNER 2 ¹²	8.5%	6.9%	3.2%	4.3%	3.7%*	0.6%*	9.1%*	26.4%*
SURTAVI ¹⁴	25.9%*	6.6%*	1.2%	2.5%	3.5%*	0.7%*	12.9%*	43.4*
NOTION ¹¹	34.1%*	1.6%*	1.4%	3.0%	15.3%*	1.8%*	16.9%*	57.8% *
SAPIEN 3 IR ¹³	10.2%	7.3%	1.0%*	4.4%*	3.8%*	0.6%*	3.2%*	28.5%*

Etiology of Single Native Left-Sided Valve Disease

lung B, Baron G, Butchart E, et al. Eur Heart J. 2003;24:1244-1253.

Evolution of our approach...

Before TAVR

In 2011

Rogers, Thourani, Waksman, JAHA. 2018.

Evolution of our approach

Before TAVR

In 2011

In 2018

In the future...

Outcomes of TAVR vs. SAVR in Intermediate risk patients

	PARTNER 2 ¹²	SURTAVI ¹⁴	NOTION ¹¹	SAPIEN 3 IR ¹³
Type of Transcatheter Heart Valve	Edwards Sapien XT	Medtronic CoreValve or Evolut R	Medtronic CoreValve	Edwards Sapien 3
Time to end point	30 d	30 d	30 d	30 d
All-cause mortality	3.9%	2.2%	2.1%	1.1%
Disabling stroke	3.2%	1.2%	1.4%	1.0%
Paravalvular leak (≥ moderate)	3.7%	3.5%*	15.3% [†]	3.8%
Major vascular complications	7.9%	6.0%	5.6%*	6.1%
Major and life-threatening bleeding	10.4%	12.2%	11.3%*	4.6%
Acute kidney injury (stage 2 or 3)	1.3%	1.7%	0.7%*	0.5%
New permanent pacemaker implantation	8.5%	25.9%	34.1%	10.2%
Time to end point	2 у	2 у	2 у	1 у
All-cause mortality	16.7%	11.4%	8.0%	7.4%
Disabling stroke	6.2%	2.6%	3.6%	2.3%
Paravalvular leak (≥ moderate)	5.5%	5.7%	15.7%	1.5%
New permanent pacemaker implantation	11.8%	25.6%	41.3%	12.4%

	PPM Implantation		Stroke		Moderate or Seve	e PVL New Atrial Fibrillation		tion
	TAVR	SAVR	TAVR	SAVR	TAVR	SAVR	TAVR	SAVR
PARTNER 2 ¹²	8.5%	6.9%	3.2%	4.3%	3.7%*	0.6%*	9.1%*	26.4%*
SURTAVI ¹⁴	25.9%*	6.6%*	1.2%	2.5%	3.5%*	0.7%*	12.9%*	43.4*
NOTION ¹¹	34.1%*	1.6%*	1.4%	3.0%	15.3%*	1.8%*	16.9%*	57.8%*
SAPIEN 3 IR ¹³	10.2%	7.3%	1.0%*	4.4%*	3.8%*	0.6%*	3.2%*	28.5%*

Evolution of our approach When not to choose TAVR...

Indications

- 1. Young patient requiring a mechanical valve
- 2. Bicuspid aortic stenosis with dilation of the ascending aorta
- 3. Very large aortic annulus
- 4. Patients ineligible for transfemoral access
- 5. Aortic stenosis with multivessel coronary artery disease

Ongoing clinical trials in low risk patients

Name	Unique Identifier	Population	Study Design	Primary End Point	THV in TAVR Arm	Sample Size
LRT ²³	NCT02628899	No age restriction STS ≤3%	Feasibility study Prospective TAVR arm with historical SAVR controls	All-cause mortality at 30 d	Transfemoral SAPIEN 3 or Evolut R/PRO	200 TAVR in main arm Up to 100 TAVR in bicuspid arm
PARTNER 3 ²⁴	NCT02675114	Age ≥65 y STS <4%	Noninferiority Randomized TAVR vs SAVR	All-cause mortality, all stroke, and rehospitalization at 1 y	Transfemoral SAPIEN 3	614 TAVR 614 SAVR
Medtronic TAVR in low risk patients ²⁵	NCT02701283	No age restriction STS <3%	Noninferiority Randomized TAVR vs SAVR	All-cause mortality or disabling stroke at 2 y	Transfemoral or subclavian Evolut R	625 TAVR 625 SAVR
NOTION 2 ²⁶	NCT02825134	Age 18 to 75 y STS <4%	Noninferiority Randomized TAVR vs SAVR	Composite rate of all-cause mortality, myocardial infarction and stroke at 1 y	Transfemoral Any CE-approved THV	496 TAVR 496 SAVR

Other Unadjusted Clinical Outcomes At 30 Days and 1 Year (AT)

	30 D a	ays	1 Year		
Events (%)	TAVR (n = 1077)	Surgery (n = 944)	TAVR (n = 1077)	Surgery (n = 944)	
Re-hospitalization	4.6	6.8	11.4	15.1	
MI	0.3	1.9	1.8	3.1	
Major Vascular Complication	6.1	5.4			
AKI (Stage III)	0.5	3.3			
Life-Threatening/Disabling Bleeding	4.6	46.7			
New Atrial Fibrillation	5.0	28.3	5.9	29.2	
New Permanent Pacemaker	10.2	7.3	12.4	9.4	
Re-intervention	0.1	0.0	0.6	0.5	
Endocarditis	0.2	0.0	0.8	0.7	

Unadjusted Time-to-Event Analysis All-Cause Mortality (AT)

Unadjusted Time-to-Event Analysis All Stroke (AT)

Partner Trial – High Risk Cohort

All-Cause Mortality at 30 Days and 1 Year Patient Subgroups

All-Cause Mortality at 30 Days

PARTNER

	All Patients no. of patients (%)		TF Patients no. of patients (%)			TA Patients no. of patients(%)			
	TAVR	AVR	<i>p</i> -value	TAVR	AVR	<i>p</i> -value	TAVR	AVR	<i>p</i> -value
ITT	12 (3.4)	22 (6.5)	0.07	8 (3.3)	15 (6.2)	0.13	4 (3.8)	7 (7.0)	0.32
AT	18 (5.2)	25 (8.0)	0.15	9 (3.7)	18 (8.2)	0.05	9 (8.7)	7 (7.6)	0.79

All-Cause Mortality at 1 Year

	All Patients no. of patients (%)		TF Patients no. of patients(%)			TA Patients no. of patients(%)			
	TAVR	AVR	<i>p</i> -value	TAVR	AVR	<i>p</i> -value	TAVR	AVR	<i>p</i> -value
ITT	84 (24.2)	89 (26.8)	0.44	54 (22.2)	62 (26.4)	0.29	30 (29.0)	27 (27.9)	0.85
AT	81 (23.7)	78 (25.2)	0.64	51 (21.3)	55 (25.2)	0.33	30 (29.1)	23 (25.3)	0.55

Paravalvular Regurgitation 3-Class Grading Scheme (VI)

The PARTNER 2A and S3i Trials

Intermediate Risk Symptomatic Severe Aortic Stenosis

Challenges Addressed

generation) 22/24 Fr delivery system

Medtronic CoreValve

Medtronic Engager TA valve (Ventor Embracer)

St. Jude Medical Portico valve

JenaValve

Iterative change and refinement of a technique

Control - SAPIEN	Test - SAPIEN 3
 Balloon expandable THV Device used in PARTNER I Stainless Steel Frame Design Carpentier-Edwards Thermafix process Bovine pericardial tissue Leaflet Matching Technology 23mm and 26mm Valves 	 Balloon expandable THV Cobalt Chromium Frame Design Lower Crimp Profile Geometry Maintains similar radial and crush strength as SAPIEN External layer of PET with integral scalloped geometry that is intended to acutely fill the voids between the valve frame and native annulus 23mm, 26mm and 29mm Valves

	20 mm	23 mm	26 mm	29 mm
Sheath size	14 Fr	14 Fr	14 Fr	16 Fr
Minimum vessel diameter	5.5 mm	5.5 mm	5.5 mm	6 mm

Intermediate risk meta-analysis

NOTION and PARTNER 2A provided data to 24 months, and US Pivotal provided data to 36 months

Siemieniuk et al. BMJ. 2016

There are options besides balloon expandable

CoreValve	Evolut [™] R		
with 18Fr Cook Sheath	with 14Fr-Equivalent InLine [®] Sheath		
18Fr	18Fr		
22 Fr (OD)	True 18Fr (OD)		

CHOICE Trial: comparison of balloon expandable vs. self expandable

Table 5. Thirty-Day Clinical Outcome

Variable	No./Total No. (%)			
	Balloon-Expandable Valve (n = 121)	Self-expandable Valve (n = 117)	Relative Risk (95% CI)	<i>P</i> Value
Death				
Any cause	5/121 (4.1)	6/117 (5.1)	0.81 (0.25-2.57)	.77
Cardiovascular causes	5/121 (4.1)	5/117 (4.3)	0.97 (0.29-3.25)	.99
Stroke	7/121 (5.8)	3/117 (2.6)	2.26 (0.60-8.52)	.33
Myocardial infarction	1/121 (0.8)	0/117 (0.0)		.99
Bleeding				
Life threatening	10/121 (8.3)	14/117 (12.0)	0.69 (0.32-1.49)	.35
Major	23/121 (19.0)	17/117 (14.5)	1.31 (0.74-2.32)	.36
Minor	11/121 (9.1)	9/117 (7.7)	1.18 (0.51-2.74)	.70
Major or minor	34/121 (28.1)	26/117 (22.2)	1.26 (0.81-1.97)	.30
Vascular complications				
All	17/121 (14.0)	15/117 (12.8)	1.10 (0.57-2.09)	.78
Major	12/121 (9.9)	13/117 (11.1)	0.89 (0.42-1.88)	.76
Minor	5/121 (4.1)	2/117 (1.7)	2.42 (0.48-12.21)	.28
Acute kidney injury	5/121 (4.1)	11/117 (9.4)	0.44 (0.16-1.23)	.13
Repeat procedure for valve-related dysfunction	1/121 (0.8)	2/117 (1.7)	0.48 (0.04-5.26)	.62
Combined safety end point ^a	22/121 (18.2)	27/117 (23.1)	0.79 (0.48-1.30)	.42
Major adverse cardiovascular and cerebrovascular events ^b	8/121 (6.6)	4/117 (3.4)	1.93 (0.60-6.25)	.38
Rehospitalization for heart failure	0/119 (0.0)	5/117 (4.3)		.02
NYHA class improvement	100/106 (94.3)	91/105 (86.7)	1.09 (1.00-1.19)	.06
Quality of life				
Score, mean (95% CI)	71.0 (68.2-73.9)	65.9 (62.4-69.5)		.02
Score change, median (IQR)	12.5 (0-20)	10 (0-20)		.19
New permanent pacemaker	19/110 (17.3)	38/101 (37.6)	0.46 (0.28-0.74)	.001

Abbreviations: IQR, interquartile range; NYHA, New York Heart Association.

^a Defined as a composite of all-cause mortality, major stroke, life-threatening or disabling bleeding, acute kidney injury stage 3 including renal replacement therapy, periprocedural myocardial infarction, major vascular complications, and repeat procedure for valve-related dysfunction.

^b Defined as a composite of myocardial infarction, cardiac or vascular surgery and stroke.

JAMA. 2014;311(15):1503-1514.

When it comes to talking to elderly patients about this....

Decision aides from ACC Championing Care Initiative (2014-2015).

Will it help me live longer?

What are the risks?

This choice may not include invasive procedures

2 out of 100 people will have a stroke or TIA within 30 days

5 out of 100 people will have a stroke or TIA within 1 year

7 out of 100 people will have a stroke or TIA within 30 days 11 out of 100 people will have a stroke or TIA within 1 year

Other Possible Complications

- Major bleeding
- Kidney failure
- Pacemaker
- Damage to blood vessels

Decision aides from ACC Championing Care Initiative (2014-2015).

The honest truth about many of our conversations in clinic.

Vs.

Transcatheter aortic valve replacement (TAVR) enabling devices developed to facilitate the procedure and reduce the risk of complications.

Christos V. Bourantas, and Patrick W. Serruys Circulation Research. 2014;114:1037-1051

All-Cause Mortality (ITT)

TAVR	348	298	261	239	222	187	149
AVR	351	252	236	223	202	174	142

Strokes (ITT)

Total AR and Mortality TAVR Patients (AT) High Risk Cohort

FDA Label

Transapical

The Edwards SAPIEN transcatheter heart valve, model 9000TFX, sizes 23 mm and 26 mm, is indicated for transapical delivery in patients with severe symptomatic calcified native aortic valve stenosis without severe aortic insufficiency and with ejection fraction > 20% who have been examined by a heart team including an experienced cardiac surgeon and a cardiologist and found to be operative candidates for aortic valve replacement but who have a Society of Thoracic Surgeons operative risk score \geq 8% or are judged by the heart team to be at a \geq 15% risk of mortality for surgical aortic valve replacement.

Transfemoral

The Edwards SAPIEN Transcatheter Heart Valve, model 9000TFX, sizes 23 mm and 26 mm, is indicated for transfermoral delivery in patients with severe symptomatic calcified native aortic valve stenosis without severe aortic insufficiency and with ejection fraction >20% who have been examined by a heart team including an experienced cardiac surgeon and a cardiologist and found to either be: 1) inoperable and in whom existing co-morbidities would not preclude the expected benefit from correction of the aortic stenosis; or 2) be operative candidates for aortic valve replacement but who have a Society of Thoracic Surgeons predicted operative risk score \geq 8% or are judged by the heart team to be at a \geq 15% risk of mortality for surgical aortic valve replacement.

Partner Trial - Inoperable: 2-year results

Figure 1. Time-to-Event Analyses of Key End Points during 2 Years of Follow-up.

Panel A shows the rate of death from any cause, Panel B the rate of death from cardiac causes, Panel C the rate of rehospitalization, and Panel D the rate of death or stroke. Event rates were calculated with the use of Kaplan–Meier methods and were compared with the use of the log-rank test. Deaths from unknown causes were assumed to be deaths from cardiac causes. TAVR denotes transcatheter aortic-valve replacement.

Leon MB, Smith CR, et al. N Engl J Med 2010

The PARTNER II Study Design

Nested Registry 3

• Transcatheter valve in surgical valve implantation (TV-SVI)

• n=100

All-Cause Mortality (ITT)

Vascular Complication Categories: At 30 Days (AT)

	SAPIEN (n=271)		SAPIEN XT (n=282)		
Events	n	%	n	%	p-value
Perforation	13	4.8	2	0.4	0.003
Dissection	25	9.2	12	4.3	0.03
Hematoma	16	5.9	10	3.6	0.23

Half are dead at one year with medical rx

Leon MB, Smith CR, et al. N Engl J Med 2010

Controversies

- Surgical considerations
 - Are there advantages to mini-AVR?
 - Choice of valve:
 - Performance considerations
 - Durability
 - Anticoagulation
- What patients should get transcatheter AVR (TAVR)?
- What about "inoperable" patients?

When to Refer?

- Severe symptomatic AS
- Moderate or severe AS undergoing another cardiac operation
- Severe asymptomatic AS with
 - LV systolic dysfunction
 - Abnormal exercise response
 - High likelihood of rapid progression

All-Cause Mortality at 30 Days (As Treated Patients)

All Strokes at 30 Days

Vascular Complication Categories: At 30 Days (AT)

	SAPIEN (n=271)		SAPIEN XT (n=282)		
Events	n	%	n	%	p-value
Perforation	13	4.8	2	0.4	0.003
Dissection	25	9.2	12	4.3	0.03
Hematoma	16	5.9	10	3.6	0.23

NYHA Functional Class (As Treated Patients)

Embolic protection devices

Embolic protection devices

Kapadia. J Am Coll Cardiol. 2017.

When it comes to talking to elderly patients about this....